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where b = bl or b2 for the (100) problem or the (111) 
problem, respectively. 

Consider the domain configuration in Fig. 2(b). Again 
the energy in the domain is 

Em.(domain) = be sin2 
(}. 

The transition through the wall proceeds in the (xz) 
plane by varying continuously from - (} to (J. The energy 
in the wall is 

(20) 

Equations (18)-(20) are the primary equations derived 
in this section. 

B. Exchange Energy 

Within the concepts of ferromagnetic domain theory, the 
exchange energy is believed to reside only in the do
main walls or transition regions between adjacent do
mains. The method for obtaining this domain-wall en
ergy is through a Landau-Lifshitz domain-wall calcula
tion .18 This has been fully developed in the litera
ture lO ,15 and will be described only briefly here. The 
method consists of writing a one-dimensional integral 
expression for the energy in the transition region be
tween domains. The terms which contribute to the do
main-wall energy are the exchange energy [Eq. (4)] 
and the excess crystalline or magnetoelastic anisotropy 
energy incurred by the transition through the wall. It is 
assumed that V· M=O «(}=const) holds through the 
wall. This one-dimensional integral energy expression 
is minimized by variational calculus. The result pre
dicts that for all points within the wall the exchange en
ergy is equal to the excess anisotropy energy. It is 
found that the domain-wall energy per unit area is given 
bylS 

The crystal anisotropy energy has not been considered. 
A is again the exchange constant and ~l and ~2 are the 
azimuthal orientation of the magnetization in the adja
cent domains separated by the wall. 

Energies for domain walls oriented as shown in Figs. 
2(a) and 2(b) will be called O! and ~, respectively. For 
Fig. 2(a), using Eqs. (18) and (19) with Eq. (21), gives 

O! =2(A / be / )1/2 sin2(} loW sin~ d~ 

or 

a!, =4(A / be /)1/2 sin2(}. (22) 

For Fig. 2(b), using Eqs. (18) and (20) with Eq. (21), 
gives 

a~ = 2(A / be /)1/2 i: (sin2 (J _ sin2 ~)l /2 d~. 

Making the substitution 

sin ~ = sin 8 sinx = a sinx 

and using the identity 

cos2x=(1- a-2) +a-2(I_a2 sin2x), 
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one obtains 

a!=4(A/be/)1/2(a 2 _1)[w/2 (1 2ax. 2 )1/2 
o -a SIn x 

This is 

a!=4(A/be/)1/2[(a 2 -1)K(a, h)+E(a, ~1T)], 

where K and E are complete elliptic integrals of the 
first and second kind and a=sin(J. 

(23) 

a~ and a! are compared in Fig. 3. It is seen that the do
main model considered in Fig. 2(b) yields a slightly 
lower energy. In actual crystalline material imperfec
tions such as dislocation, impurities, etc., can signi
ficantly alter the domain-wall energy. For this reason, 
it ~s believed that the slight energy difference is not 
substantial enough to favor the domain structure in Fig. 
2(b) over that in Fig. 2(a). Alternatively, a Boltzmann 
distribution predicts, at normal temperatures, roughly 
an even distribution of domain walls of both orienta
tions. From this, one may conclude that ferromagnetic 
domain theory suggests a needle- or sliver-shaped do
main structure oriented along the axis of uniaxial strain 
will nucleate behind the shock front. A model for this 
structure is shown in Fig. 2(c). 

Due to the much Simpler form of Eq. (22), the approxi
mation 

a! "" a~ = aw=4(A / be /)1/2 sin2 8 

will be made. An expression for the effective exchange 
energy density in Eq. (1) can be obtained by dividing 

by the domain dimension D shown in Fig. 2(c). This 
gives 

Eox = 2a",/D 

or 

Eex = [8(A / be /)1 /2/D] sin2(J. 

C. Demagnetizing Energy 

(24) 

The demagnetizing energy can be obtained by solving 
the magnetostatic boundary value problem for the mag
netic surface pole distribution on two surfaces sepa
rated a distance L as indicated in Fig. 4. The solution 
requires only a slight variation on a problem already 
solved by Kittel. 19 The result is 

Ed =1.1(DM:/ L)sin2 8. (25) 

L is the slab thickness, D is the domain dimension, and 
M. is the saturation magnetization. 

D. Total Energy 

From the results of this section, Eq. (1) for the total 
thermodynamic energy can now be explicitly written 

E(D, 8)= -Mjiecos8 +besin2 8 + 1. 1 (DM;/L) sin2 8 

+[8(A /be/}l/2/D] sin2 8, (26) 

where cos 8 is the component of the magnetization in the 
direction of the applied field. 
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FIG. 6. Magnetization curves for the (100) and 
the (111) problem in YrG. 

IV. EQUIUBRIUM MAGNETIC BEHAVIOR 

Equilibrium thermodynamics requires that the energy 
expression E(D, 8) be a minimum with respect to a 
variation of the internal coordinates D and 8. Consider 
the domain-width parameter first. Minimizing with 
respect to D gives 

aE -11 M : . 28 
aD- . L sm 8(A 1 be 1)112 . 28 0 Ir sm = . 

This yields an expreSSion for the domain width: 

D = [8L(A 1 be 1 )1/2 /1.1M;]l/2. (27) 

This can be substituted back into Eq. (26) giving 

E(8)= -MjIecos8 + besin2 8 

+ 2[8. 8M; (A 1 be 1 )1/2/L]1/2 sin2 8 

or 

E(8) = - MjIecos8 + besin2 8 + yl e 11/4sin2 8, 

where 

Y= 2[8 . 8M; (A 1 b 1 )1/2/LJl/2. 

(28) 

The last term in Eq. (28) will be called the equilibrium 
exchange and demagnetizing energy. Note that it in
creases as the fourth root of the strain. 

From Eq. (28) the magnetization curve can be obtained. 
The requirement of equilibrium yields two solutions: 

sin8=0 (29) 

or 

(30) 

The correct solution for a given applied field is deter
mined from the requirement that the equilibrium point 
be a minimum. Two cases occur which are determined 
by the Sign of f3 == (be + y 1 e 11/4). The sign depends on the 
strain e (usually negative in shock-wave experiments) 
and the magnetoelastic constant b. y is always positive. 
For the first case «(:3 < 0), the magnetization is 

M/Ms=1, 

=-(M/2f3}He , 

He> -2(:3/Ms 

He < -2f3/Ms' (31) 

The form of the magnetization curve is shown in Fig. 5. 
Shock-induced demagnetization is expected for f3 < O. 
For example, referring to Fig. 5, a material initially 
in magnetic saturation in a transverse field HeO would 
suffer a reduction in magnetization to a value M after 
passage of the shock wave. For the second case (f3 > 0), 
the axis of uniaxial strain defines a hard direction of 
magnetization. All perpendicular axes are equivalent 
easy directions and the magnetization curve predicted 
by this simple treatment will be a discontinuous jump 
of 2Ms on reversal of the applied field. This case does 
not, however, lead to shock demagnetization and, 
therefore, is not of interest in the present context. 

V. DISCUSSION 

Results of Sec. IV will be considered using the material 
properties of yttrium iron garnet. This ferrimagnetic 
ceramic has received attention in previous shock-in
duced anisotropy work because of the convenient mag
nitudes of its material properties. A rough value for 
the exchange constant of YIG obtained from molecular 
field theory is A'" 3 X 10-7 erg/ cm. At a strain of - 0.01 
in YIG, which corresponds to about 25-kbar shock 
pressure, the predicted domain width from Eq. (27) is 
20 J,J.. This is in agreement with other work. 7 

The equilibrium exchange and demagnetizing energy 
[last term in Eq. (28)] is observed to increase as the 
fourth root of the strain while the induced anisotropy 
energy increases linearly with the strain. This implies 
that the eC{u.ilibrium exchange and demagnetizing energy 
would assume decreasing importance with increasing 
strain. For a strain of -0.01, the equilibrium ex
change and demagnetizing energy is about 2% of the in
duced anisotropy energy. This justifies the approxima
tion of ignoring this energy term in predicting magnetic 
behavior in the region of large strain as has been done 
in previous work.2 ,5,7 It is worth noting that this approx
imation does not extedd to all materials. In iron this 
neglected term represents a Significant part of the en
ergy even up to the elastic limit of the material. 

Magnetization curves for the (100) problem and the (111) 
in YIG are shown in Fig. 6. They will be referred to in 
the following article. 11 The equilibrium exchange and 
demagnetizing energy has been ignored. The curves are 
plotted against the parameter H / e. Magnetization 
curves for any strain are expected to be self-similar 
against this parameter. 

VI. SUMMARY 

(i) The fourth-rank magnetoelastic tensor for a given 
state of uniaxial strain can be analyzed with the famil
iar techniques available for second-rank symmetric 
tensors. It was found that the axis of uniaxial strain 
defined an easy or hard direction of magnetization only 
in special cases of particular crystal orientations such 
as uniaxial strain along the (100) or (111) directions or 
in the case of magnetoelastic isotropy. 

(ii) The established methods of ferromagnetic domain 
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